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G from global fits
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Spin structure functions : Input to global QCD fits for extraction of 
qf(x) and G(x) using evolution equations.

However x and Q2 coverage not yet sufficient
Use constraint from pp data (DSSV)

Note: 200 GeV proton data to come from COMPASS 2011 run

Deep-inelastic scattering 2

!"#$%"&'()#*+,*(#-+'%.&./0#()1'.2'%)+'$"-3+.$

!"#$%&'(%#)*+,",-#&',+
.&/'0&'/-+"1+&2-+#'0*-"#+

longitudinal momentum structure

longitudinal spin structure

FRANCESCA GIORDANO                                                                   2011 RHIC & AGS ANNUAL USERS' MEETING



Deep-inelastic scattering

integrated over all 
produced hadrons

2

!"#$%"&'()#*+,*(#-+'%.&./0#()1'.2'%)+'$"-3+.$

!"#$%&'(%#)*+,",-#&',+
.&/'0&'/-+"1+&2-+#'0*-"#+

2

!"#$%"&'()#*+,*(#-+'%.&./0#()1'.2'%)+'$"-3+.$

!"#$%&'(%#)*+,",-#&',+
.&/'0&'/-+"1+&2-+#'0*-"#+

Sunday, June 19, 2011

i r f u

yalcas

i r f u

yalcas

i r f u

yalcas F. Kunne                                       DIS 2011, Newport News, VA, USA, April  2011 15

G from global fits
)()(

2
1)( 2

1 xqxqexg q
inclusive
DISPolarized DIS, spin structure function g1

Polarized PDFs

CLAS

deuteronproton

Spin structure functions : Input to global QCD fits for extraction of 
qf(x) and G(x) using evolution equations.

However x and Q2 coverage not yet sufficient
Use constraint from pp data (DSSV)

Note: 200 GeV proton data to come from COMPASS 2011 run

Deep-inelastic scattering 2

!"#$%"&'()#*+,*(#-+'%.&./0#()1'.2'%)+'$"-3+.$

!"#$%&'(%#)*+,",-#&',+
.&/'0&'/-+"1+&2-+#'0*-"#+

longitudinal momentum structure

longitudinal spin structure

80s: Spin crisis
only 30% of nucleon spin is 
carried by valence quarks
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Quark helicities from Semi-Inclusive DIS

COMPASS
PLB693(2010)227, using DSS FF
o   HERMES
PRD71(2005)012003
__ DSSV 

Full flavour separation x~0.004
Sea quark distributions ~ zero
Good agreement with global fits

HERMES s+ s=0.037 ± 0.019 (stat) ± 0.027 (syst), PLB666(2008)466
COMPASS s =-0.01 ± 0.01 (stat) ± 0.01 (syst),  0.003<x<0.3

Q2=3 (GeV/c)2

s s compatible with 0 

COMPASS PLB 693(2010)227
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2. Proton Proton collisions
Gluon-Quark + Gluon-

G
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q
q
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G

RHIC : PHENIX & STAR

+

+

1. Lepton Nucleon
Photon Gluon Fusion

G/G(x)

SMC, HERMES, COMPASS

ALL (pT)

3. QCD evolution of spin structure function g1(x,Q2): 
Indirect determination assuming a functional form G(x).
Global fits include polarized DIS, SIDIS and pp data 
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum

9

transverse   longitudinal

nucleon spin

parton spin

DY 2011, BNL - May 11th, 2011Gunar Schnell 

TMDs - Probabilistic interpretation
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h⊥1T =

h⊥1L =

g1T =
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parton transverse momentum

nucleon with transverse or longitudinal spin

Proton goes out of the screen/ photon goes into the screen

[courtesy of A. Bacchetta]

Wednesday, May 11, 2011
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Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h
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1 (x) distributions. Omit-
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and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h
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1 (x) distributions. Omit-
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Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
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Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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Transversity in DIS

1-hadron production 2-hadron production
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and a similar formula for the cos(φ1 + φ2) modulation
amplitude a12. The interference fragmentation function
H<),q

1 of a quark q ( and charge eq) , and its polarization-
independent counterpart Dq

1, depend on the fractional

energy zα
CMS
= 2Eα/

√
s of the hadron pair in hemisphere

α and on its invariant mass mα. The CMS energy is
denoted by

√
s and the polar angle θ is defined between

the lepton axis and the reference axis in the CMS. As the
polar angular dependence is a clear indication of initial
transverse quark polarization, its asymmetry dependence
was studied.

Ph1
R1 Ph1 + Ph2

π − φ1

Ph3

φ2 − π

Thrust axis n̂

e−

e+

Ph2

Ph4

FIG. 1: Azimuthal angle definitions for φ1 and φ2 as defined
relative to the thrust axis in the CMS.

Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the
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Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :
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The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
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Transversity in DIS

1-hadron production 2-hadron production
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and a similar formula for the cos(φ1 + φ2) modulation
amplitude a12. The interference fragmentation function
H<),q

1 of a quark q ( and charge eq) , and its polarization-
independent counterpart Dq

1, depend on the fractional

energy zα
CMS
= 2Eα/

√
s of the hadron pair in hemisphere

α and on its invariant mass mα. The CMS energy is
denoted by

√
s and the polar angle θ is defined between

the lepton axis and the reference axis in the CMS. As the
polar angular dependence is a clear indication of initial
transverse quark polarization, its asymmetry dependence
was studied.

Ph1
R1 Ph1 + Ph2

π − φ1

Ph3

φ2 − π

Thrust axis n̂

e−

e+

Ph2

Ph4

FIG. 1: Azimuthal angle definitions for φ1 and φ2 as defined
relative to the thrust axis in the CMS.

Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the

h1 ×
Collins ff Interference ff

AUT ∝ AUT ∝
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are selected with a thrust value larger than 0.8. The
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and a similar formula for the cos(φ1 + φ2) modulation
amplitude a12. The interference fragmentation function
H<),q

1 of a quark q ( and charge eq) , and its polarization-
independent counterpart Dq

1, depend on the fractional

energy zα
CMS
= 2Eα/

√
s of the hadron pair in hemisphere

α and on its invariant mass mα. The CMS energy is
denoted by

√
s and the polar angle θ is defined between

the lepton axis and the reference axis in the CMS. As the
polar angular dependence is a clear indication of initial
transverse quark polarization, its asymmetry dependence
was studied.

Ph1
R1 Ph1 + Ph2

π − φ1

Ph3

φ2 − π

Thrust axis n̂

e−

e+

Ph2

Ph4

FIG. 1: Azimuthal angle definitions for φ1 and φ2 as defined
relative to the thrust axis in the CMS.

Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the

h1 ×
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with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
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from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
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An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :
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max
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· n̂|
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The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
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Collins and Ladinsky[14] used the linear sigma model
to make the first predictions for π-π correlations. An-
other approach makes use of a partial wave analysis to
arrive at predictions for H!

1 , which receives essential con-
tributions from the interference of meson pairs (pions and
kaons) in relative S- and P-wave states [15, 16]. A strong
dependence on the invariant mass of the hadron pair is
predicted. Predictions for spin effects that can be ob-
served at the B-factories can be found in papers by Jaffe,
Jin and Tang [17] and Radici, Jakob and Bianconi [18],
with the latter being recently extended to e+e− anni-
hilation [19] at Belle energies. Jaffe and collaborators
estimate the final-state interactions of the meson pairs
from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the

h1 ×

Direct product! 
No assumption needed!
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from meson-meson phase shift data in [20], where it is
observed that S- and P-wave production channels inter-

fere strongly in the mass region around the ρ, the K∗ and
the φ meson resonances, and give rise to a sign change of
the IFF.
The present analysis is based on a data sample of 672

fb−1, collected with the Belle detector at the KEKB
asymmetric-energy e+e− (3.5 on 8 GeV) collider [21]
operating at the Υ(4S) resonance and 60 MeV below.
The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return yoke located outside of the coil is in-
strumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [22].
Two inner detector configurations were used. A 2.0 cm
radius beampipe and a 3-layer silicon vertex detector
were used for the first sample of 157 fb−1, while a 1.5 cm
radius beampipe, a 4-layer silicon detector and a small-
cell inner drift chamber were used to record the remaining
516 fb−1[23].
The most important selection criterion is the event

shape variable thrust, T , the maximum of which defines
the thrust axis n̂ :

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h

|
. (3)

The sum extends over all detected particles, and PCMS
h

denotes their momenta in the CMS. The deviation of
the reconstructed thrust axis from the generated quark-
antiquark pair axis for light quarks is 135 mrad with an
RMS of 90 mrad, as obtained from the simulated sam-
ple of events. This value is compatible with those cited
earlier in the Collins analysis [2]. Since the two pairs
of hadrons should appear in a two-jet topology, events
are selected with a thrust value larger than 0.8. The
contamination from B decays in this event sample is
around 2% [3]. As the hadron pairs are sampled only
in the barrel region of the detector, one has to ensure
that for those pairs all possible azimuthal angles around
the thrust axis lie also within this acceptance. For this
purpose only events with a thrust axis pointing into the

h1 ×

Direct product! 
No assumption needed!
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum
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there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum

9

transverse   longitudinal

nucleon spin

parton spin

DY 2011, BNL - May 11th, 2011Gunar Schnell 

TMDs - Probabilistic interpretation

4

f1 =

g1 =

h1 =

f⊥1T =

h⊥1 =

h⊥1T =

h⊥1L =

g1T =

parton with transverse or longitudinal spin

parton transverse momentum

nucleon with transverse or longitudinal spin

Proton goes out of the screen/ photon goes into the screen

[courtesy of A. Bacchetta]

Wednesday, May 11, 2011

parton transverse 
momentum



FRANCESCA GIORDANO                                                                   2011 RHIC & AGS ANNUAL USERS' MEETING

momentum helicity

transversity

C
ha
pt
er
2

2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
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The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
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glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.
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Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
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the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.
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Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
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g (h). The dependence of the PDF on the quark flavour is included as superscript q.
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glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
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2.2. The interpretation of TMD

PDF probabilistic interpretation chiral properties

f q1 (x) chiral-even

gq1 (x) chiral-even

hq1 (x) chiral-odd

legend
transverse and longitudinal nucleon polarisation

transverse and longitudinal quark polarisation

Table 2.1.: Pictorial representation and chiral properties of the leading-twist PDF: The notation of
the quark distribution functions uses the letters f ,g,h specifying the quark polarisation
and a subscript indicating leading-twist (digit 1) or subleading-twist distributions (digit
2). Unpolarised quarks are denoted as f , longitudinally (transversely) polarised quarks as
g (h). The dependence of the PDF on the quark flavour is included as superscript q.

whereas the amplitude that defines the transversity distribution involves a helicity flip:

hq1 (x)∼![A+−,−+]. (2.17)

The momentum distribution (figure 2.2) and the helicity distribution (figure 2.3) have been mea-
sured accurately in a variety of experiments. The measurement of the transversity distribution is
hampered by its chiral properties. In the infinite momentum frame, where quark masses can be ne-
glected, helicity and chirality properties of quarks are identical. Thus, the transversity distribution is
associated with both a helicity and chirality flip and known as a chiral-odd function. Chiral symmetry
can be dynamically broken for quark distribution (or fragmentation) functions which are described
by non-perturbative QCD. But chirality is conserved for all perturbative QCD and electroweak pro-
cesses such as inclusive measurements of deep-inelastic scattering. Hence, the transversity distribu-
tion can only be studied in interactions involving another chiral-odd (distribution or fragmentation)
function. One example is an analysis of the Collins mechanism which is sensitive to transversity in
conjunction with a chiral-odd fragmentation function (section 2.3).
Another consequence of the chiral properties is the simple scale-dependence of the transversity

distribution. A helicity flip of spin-1 gluons would require a change of the nucleons’ helicities by
|"−"�| = 2. Thus, there is no analogon of transversity for gluons in a nucleon. Contrary to the
momentum and helicity distributions, transversity does not mix with gluons under Q2-evolution, i.e.
there is no sea-quark contribution and transversity decreases slowly towards zero with increasingQ2.

2.2. The interpretation of TMD
Leading twist effects are associated with quark-quark correlations; quark-gluon correlations enter at
subleading twist. In section 2.1.3, the leading twist parametrisation of the nucleon structure is dis-
cussed in terms of the momentum f q1 (x), helicity gq1 (x) and transversity h

q
1 (x) distributions. Omit-

ting also here the weak scale dependence, the three parton distribution functions depend only on the
Bjorken scaling variable x, representing in the infinite momentum frame the longitudinal momentum

9

transverse   longitudinal

nucleon spin

parton spin
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tracted from HERMES [13] and Belle [37] data, are plot-
ted as filled bands in Fig. 4. The kinematic dependence
of the SSA for π+ from the CLAS data is roughly consis-
tent with these predictions. The interpretation of the π−

data, which tend to have SSAs with a sign opposite to ex-
pectations, may require accounting for additional contri-
butions (e.g. interference effects from exclusive ρ0p and
π−∆++ channels). This will require a detailed study with
higher statistics of both double and single spin asymme-
tries from pions coming from ρ-decays.
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FIG. 4: The measured x-dependence of the longitudinal tar-
get SSA Asin 2φ

UL (triangles). The squares show the existing
measurement ofAsin 2φ

UL from HERMES. The lower band shows
the systematic uncertainty. The upper band shows the exist-
ing theory predictions with uncertainties due to the Collins
function [28, 50].

The sin 2φ moment of the π+ SSA at large x is domi-
nated by u-quarks; therefore with additional input from
Belle measurements [37] on the ratio of unfavored to fa-
vored Collins fragmentation functions, it can provide a
first glimpse of the twist-2 TMD function h⊥

1L.
In summary, kinematic dependencies of single and dou-

ble spin asymmetries have been measured in a wide kine-
matic range in x and PT with CLAS and a longitudi-
nally polarized proton target. Measurements of the PT -
dependence of the double spin asymmetry, performed for
the first time, indicate the possibility of different average
transverse momentum for quarks aligned or anti-aligned
with the nucleon spin. A non-zero sin 2φ single-target
spin asymmetry is measured for the first time, indicat-
ing that spin-orbit correlations of transversely polarized
quarks in the longitudinally polarized nucleon may be
significant.
New, higher statistics measurements of SSAs in SIDIS

at CLAS [51] will allow us to examine the Q2, x, and PT

dependences of azimuthal moments in multi-dimensional
bins and investigate the twist nature of different observ-
ables.
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The sin 2φ moment of the π+ SSA at large x is domi-
nated by u-quarks; therefore with additional input from
Belle measurements [37] on the ratio of unfavored to fa-
vored Collins fragmentation functions, it can provide a
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In summary, kinematic dependencies of single and dou-
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matic range in x and PT with CLAS and a longitudi-
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the first time, indicate the possibility of different average
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Summary

To date, DIS experiments have played a crucial role in 
describing the proton structure

Different reactions give complementary information: DIS, 
hadron and e+e- reactions are all needed to gain a complete 
picture of inner nucleon structure 
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Thank you!


